Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674145

RESUMO

Beneficial properties of lactic acid bacteria have been known long ago, but particular interest in probiotics has arisen in the last two decades due to the understanding of the important role of intestinal microflora in human life. Thus, the ability of probiotics to support healthy homeostasis of gut microbiomes has received particular attention. Here, we evaluated the effect of a probiotic consisting of Bifidobacterium longum and Lacticaseibacillus paracasei on the gut microbiome of male rats, assessed their persistence in the fecal biota, and compared probiotic-mediated changes in vitro and in vivo. As expected, microbiomes of two enterotypes were identified in the feces of 21 animals, and it turned out that even a single dose of the probiotic altered the microbial composition. Upon repeated administration, the E1 biota temporarily acquired properties of the E2 type. Being highly sensitive to the intervention of probiotic bacteria at the phylum and genus levels, the fecal microbiomes retained the identity of their enterotypes when transferred to a medium optimized for gut bacteria. For the E2 biota, even similarities between probiotic-mediated reactions in vitro and in vivo were detected. Therefore, fecal-derived microbial communities are proposed as model consortia to optimize the response of resident bacteria to various agents.


Assuntos
Fezes , Microbioma Gastrointestinal , Probióticos , Animais , Masculino , Ratos , Fezes/microbiologia , Bifidobacterium longum , RNA Ribossômico 16S/genética
2.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674615

RESUMO

Rodents, including the striped field mouse (Apodemus agrarius), play vital roles in ecosystem functioning, with their gut microbiota contributing significantly to various ecological processes. Here, we investigated the structure and function of 94 wild A. agrarius individuals from 7 geographic populations (45°57' N, 126°48' E; 45°87' N, 126°37' E; 45°50' N, 125°31' E; 45°59' N, 124°37' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E), revealing two distinct enterotypes (Type1 and Type2) for the first time. Each enterotype showed unique microbial diversity, functions, and assembly processes. Firmicutes and Bacteroidetes dominated, with a significant presence of Lactobacillus and Muribaculaceae. Functional analysis highlighted metabolic differences, with Type1 emphasizing nutrient processing and Type2 showing higher energy production capacity. The analysis of the neutral model and the null model revealed a mix of stochastic (drift and homogenizing dispersal) and deterministic processes (homogenous selection) that shape the assembly of the microbiota, with subtle differences in the assembly processes between the two enterotypes. Correlation analysis showed that elevation and BMI were associated with the phylogenetic turnover of microbial communities, suggesting that variations in these factors may influence the composition and diversity of the gut microbiota in A. agrarius. Our study sheds light on gut microbial dynamics in wild A. agrarius populations, highlighting the importance of considering ecological and physiological factors in understanding host-microbiota interactions.

3.
ISME Commun ; 4(1): ycae007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38415200

RESUMO

The structure of microbiomes is often classified into discrete or semi-discrete types potentially differing in community-scale functional profiles. Elucidating the mechanisms that generate such "alternative states" of microbiome compositions has been one of the major challenges in ecology and microbiology. In a time-series analysis of experimental microbiomes, we here show that both deterministic and stochastic ecological processes drive divergence of alternative microbiome states. We introduced species-rich soil-derived microbiomes into eight types of culture media with 48 replicates, monitoring shifts in community compositions at six time points (8 media × 48 replicates × 6 time points = 2304 community samples). We then confirmed that microbial community structure diverged into a few state types in each of the eight medium conditions as predicted in the presence of both deterministic and stochastic community processes. In other words, microbiome structure was differentiated into a small number of reproducible compositions under the same environment. This fact indicates not only the presence of selective forces leading to specific equilibria of community-scale resource use but also the influence of demographic drift (fluctuations) on the microbiome assembly. A reference-genome-based analysis further suggested that the observed alternative states differed in ecosystem-level functions. These findings will help us examine how microbiome structure and functions can be controlled by changing the "stability landscapes" of ecological community compositions.

4.
Gut Microbes ; 16(1): 2315633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358253

RESUMO

Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.


Assuntos
Microbioma Gastrointestinal , Propiofenonas , Adulto , Humanos , RNA Ribossômico 16S/genética , Flavonoides/farmacologia , Prebióticos
5.
Gut Microbes ; 16(1): 2292254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38117560

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory intestinal disease affecting the colon and rectum, with its pathogenesis attributed to genetic background, environmental factors, and gut microbes. This study aimed to investigate the role of enterotypes in UC by conducting a hierarchical analysis, determining differential bacteria using machine learning, and performing Species Co-occurrence Network (SCN) analysis. Fecal bacterial data were collected from UC patients, and a 16S rRNA metagenomic analysis was performed using the QIIME2 bioinformatics pipeline. Enterotype clustering was conducted at the family level, and deep neural network (DNN) classification models were trained for UC and healthy controls (HC) in each enterotype. Results from eleven 16S rRNA gut microbiome datasets revealed three enterotypes: Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Clostridiaceae (ET-C). Ruminococcus (R. gnavus) abundance was significantly higher in UC subjects with ET-B and ET-C than in those with ET-L. R. gnavus also showed a positive correlation with Clostridia in UC SCN for ET-B and ET-C subjects, with a higher correlation in ET-C subjects. Conversely, Odoribacter (O.) splanchnicus and Bacteroides (B.) uniformis exhibited a positive correlation with tryptophan metabolism and AMP-activated protein kinase (AMPK) signaling pathways, while R. gnavus showed a negative correlation. In vitro co-culture experiments with Clostridium (C.) difficile demonstrated that fecal microbiota from ET-B subjects had a higher abundance of C. difficile than ET-L subjects. In conclusion, the ET-B enterotype predisposes individuals to UC, with R. gnavus as a potential risk factor and O. splanchnicus and B. uniformis as protective bacteria, and those with UC may have ultimately become ET-C.


Assuntos
Clostridioides difficile , Colite Ulcerativa , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Bacteroidaceae , Aprendizado de Máquina
6.
Metabolites ; 13(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38132864

RESUMO

Advances in high-throughput DNA sequencing have propelled research into the human microbiome and its link to metabolic health. We explore microbiome analysis methods, specifically emphasizing metabolomics, how dietary choices impact the production of microbial metabolites, providing an overview of studies examining the connection between enterotypes and diet, and thus, improvement of personalized dietary recommendations. Acetate, propionate, and butyrate constitute more than 95% of the collective pool of short-chain fatty acids. Conflicting data on acetate's effects may result from its dynamic signaling, which can vary depending on physiological conditions and metabolic phenotypes. Human studies suggest that propionate has overall anti-obesity effects due to its well-documented chemistry, cellular signaling mechanisms, and various clinical benefits. Butyrate, similar to propionate, has the ability to reduce obesity by stimulating the release of appetite-suppressing hormones and promoting the synthesis of leptin. Tryptophan affects systemic hormone secretion, with indole stimulating the release of GLP-1, which impacts insulin secretion, appetite suppression, and gastric emptying. Bile acids, synthesized from cholesterol in the liver and subsequently modified by gut bacteria, play an essential role in the digestion and absorption of dietary fats and fat-soluble vitamins, but they also interact directly with intestinal microbiota and their metabolites. One study using statistical methods identified primarily two groupings of enterotypes Bacteroides and Ruminococcus. The Prevotella-dominated enterotype, P-type, in humans correlates with vegetarians, high-fiber and carbohydrate-rich diets, and traditional diets. Conversely, individuals who consume diets rich in animal fats and proteins, typical in Western-style diets, often exhibit the Bacteroides-dominated, B-type, enterotype. The P-type showcases efficient hydrolytic enzymes for plant fiber degradation but has limited lipid and protein fermentation capacity. Conversely, the B-type features specialized enzymes tailored for the degradation of animal-derived carbohydrates and proteins, showcasing an enhanced saccharolytic and proteolytic potential. Generally, models excel at predictions but often struggle to fully elucidate why certain substances yield varied responses. These studies provide valuable insights into the potential for personalized dietary recommendations based on enterotypes.

7.
PeerJ ; 11: e15838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701837

RESUMO

Enterotypes of the human gut microbiome have been proposed to be a powerful prognostic tool to evaluate the correlation between lifestyle, nutrition, and disease. However, the number of enterotypes suggested in the literature ranged from two to four. The growth of available metagenome data and the use of exact, non-linear methods of data analysis challenges the very concept of clusters in the multidimensional space of bacterial microbiomes. Using several published human gut microbiome datasets of variable 16S rRNA regions, we demonstrate the presence of a lower-dimensional structure in the microbiome space, with high-dimensional data concentrated near a low-dimensional non-linear submanifold, but the absence of distinct and stable clusters that could represent enterotypes. This observation is robust with regard to diverse combinations of dimensionality reduction techniques and clustering algorithms.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Metagenoma , Algoritmos
8.
Gut Microbes ; 15(2): 2247025, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37614109

RESUMO

Synbiotics are increasingly used by the general population to boost immunity. However, there is limited evidence concerning the immunomodulatory effects of synbiotics in healthy individuals. Therefore, we conducted a double-blind, randomized, placebo-controlled study in 106 healthy adults. Participants were randomly assigned to receive either synbiotics (containing Bifidobacterium lactis HN019 1.5 × 108 CFU/d, Lactobacillus rhamnosus HN001 7.5 × 107 CFU/d, and fructooligosaccharide 500 mg/d) or placebo for 8 weeks. Immune parameters and gut microbiota composition were measured at baseline, mid, and end of the study. Compared to the placebo group, participants receiving synbiotic supplementation exhibited greater reductions in plasma C-reactive protein (P = 0.088) and interferon-gamma (P = 0.008), along with larger increases in plasma interleukin (IL)-10 (P = 0.008) and stool secretory IgA (sIgA) (P = 0.014). Additionally, synbiotic supplementation led to an enrichment of beneficial bacteria (Clostridium_sensu_stricto_1, Lactobacillus, Bifidobacterium, and Collinsella) and several functional pathways related to amino acids and short-chain fatty acids biosynthesis, whereas reduced potential pro-inflammatory Parabacteroides compared to baseline. Importantly, alternations in anti-inflammatory markers (IL-10 and sIgA) were significantly correlated with microbial variations triggered by synbiotic supplementation. Stratification of participants into two enterotypes based on pre-treatment Prevotella-to-Bacteroides (P/B) ratio revealed a more favorable effect of synbiotic supplements in individuals with a higher P/B ratio. In conclusion, this study suggested the beneficial effects of synbiotic supplementation on immune parameters, which were correlated with synbiotics-induced microbial changes and modified by microbial enterotypes. These findings provided direct evidence supporting the personalized supplementation of synbiotics for immunomodulation.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Simbióticos , Humanos , Adulto , Aminoácidos , Bacteroides
9.
Nutrients ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447266

RESUMO

Colorectal cancer (CRC) risk is influenced by dietary patterns and gut microbiota enterotypes. However, the interaction between these factors remains unclear. This study examines this relationship, hypothesizing that different diets may affect colorectal tumor risk in individuals with varied gut microbiota enterotypes. We conducted a case-control study involving 410 Han Chinese individuals, using exploratory structural equation modeling to identify two dietary patterns, and a Dirichlet multinomial mixture model to classify 250 colorectal neoplasm cases into three gut microbiota enterotypes. We assessed the association between dietary patterns and the risk of each tumor subtype using logistic regression analysis. We found that a healthy diet, rich in vegetables, fruits, milk, and yogurt, lowers CRC risk, particularly in individuals with type I (dominated by Bacteroides and Lachnoclostridium) and type II (dominated by Bacteroides and Faecalibacterium) gut microbiota enterotypes, with adjusted odds ratios (ORs) of 0.66 (95% confidence interval [CI] = 0.48-0.89) and 0.42 (95% CI = 0.29-0.62), respectively. Fruit consumption was the main contributor to this protective effect. No association was found between a healthy dietary pattern and colorectal adenoma risk or between a high-fat diet and colorectal neoplasm risk. Different CRC subtypes associated with gut microbiota enterotypes displayed unique microbial compositions and functions. Our study suggests that specific gut microbiota enterotypes can modulate the effects of diet on CRC risk, offering new perspectives on the relationship between diet, gut microbiota, and colorectal neoplasm risk.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Estudos de Casos e Controles , Neoplasias Colorretais/patologia , Dieta Hiperlipídica , População do Leste Asiático , Dieta Saudável
10.
Microorganisms ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374892

RESUMO

Early life gut microbiota-influencing factors may play an important role in programming individuals long-term health and substantial efforts have been devoted into studying the development of the gut microbiota in relation to early life events. This study aimed to examine in a single study, the persistence of associations between 20 factors occurring in the early life and the gut microbiota at 3.5 years of 798 children from two French nationwide birth cohorts, EPIPAGE 2 (very preterm children) and ELFE (late preterm and full-term children). Gut microbiota profiling was assessed using 16S rRNA gene sequencing-based method. Upon thorough adjustment of confounding factors, we demonstrated that gestational age was one of the factors most associated with gut microbiota differences with a noticeable imprint of prematurity at 3.5 years of age. Children born by cesarean section harbored lower richness and diversity and a different overall gut microbiota composition independently of preterm status. Children who had ever received human milk were associated with a Prevotella-driven enterotype (P_type) compared to those who had never received human milk. Living with a sibling was associated with higher diversity. Children with siblings and those attending daycare centers were associated with a P_type enterotype. Maternal factors including the country of birth and preconception maternal body mass index were associated with some microbiota characteristics: children born to overweight or obese mothers showed increased gut microbiota richness. This study reveals that multiple exposures operating from early life imprint the gut microbiota at 3.5 years that is a pivotal age when the gut microbiota acquires many of its adult characteristics.

11.
Cell Host Microbe ; 31(7): 1111-1125.e6, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339626

RESUMO

The human gut microbiome composition is generally in a stable dynamic equilibrium, but it can deteriorate into dysbiotic states detrimental to host health. To disentangle the inherent complexity and capture the ecological spectrum of microbiome variability, we used 5,230 gut metagenomes to characterize signatures of bacteria commonly co-occurring, termed enterosignatures (ESs). We find five generalizable ESs dominated by either Bacteroides, Firmicutes, Prevotella, Bifidobacterium, or Escherichia. This model confirms key ecological characteristics known from previous enterotype concepts, while enabling the detection of gradual shifts in community structures. Temporal analysis implies that the Bacteroides-associated ES is "core" in the resilience of westernized gut microbiomes, while combinations with other ESs often complement the functional spectrum. The model reliably detects atypical gut microbiomes correlated with adverse host health conditions and/or the presence of pathobionts. ESs provide an interpretable and generic model that enables an intuitive characterization of gut microbiome composition in health and disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bactérias/genética , Metagenoma , Firmicutes , Bacteroides/genética , Fezes/microbiologia
12.
Poult Sci ; 102(4): 102568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889043

RESUMO

Intramuscular fat (IMF) content is a meat quality trait of major economic importance in animal production. Emerging evidence has demonstrated that meat quality can be improved by regulating the gut microbiota. However, the organization and ecological properties of the gut microbiota and its relationship with the IMF content remain unclear in chickens. Here, we investigated the microbial communities of 206 cecal samples from broilers with excellent meat quality. We noted that the cecal microbial ecosystem obtained from hosts reared under the same management and dietary conditions showed clear compositional stratification. Two enterotypes, in which the ecological properties, including diversity and interaction strengths, were significantly different, described the microbial composition pattern. Compared with enterotype 2, enterotype 1, distinguished by the Clostridia_vadinBB60_group, had a higher fat deposition, although no discrepancy was found in growth performance and meat yield. A moderate correlation was observed in the IMF content between 2 muscle tissues, despite the IMF content of thigh muscle was 42.76% greater than that of breast muscle. Additionally, the lower abundance of cecal vadinBE97 was related to higher IMF levels in both muscle tissues. Although vadinBE97 accounted for 0.40% of the total abundance of genera in the cecum, it exhibited significant and positive correlations with other genera (accounting for 25.3% of the tested genera). Our results highlight important insights into the cecal microbial ecosystem and its association with meat quality. Microbial interactions should be carefully considered when developing approaches to improve the IMF content by regulating the gut microbiota in broilers.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Galinhas/fisiologia , Músculo Esquelético/fisiologia , Ceco , Carne/análise
13.
Gut Microbes ; 15(1): 2178801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799472

RESUMO

Obesity is a complex, multifactorial condition that is an important risk factor for noncommunicable diseases including cardiovascular disease and type 2 diabetes. While prevention and management require a healthy and energy balanced diet and adequate physical activity, the taxonomic composition and functional attributes of the colonic microbiota may have a supplementary role in the development of obesity. The taxonomic composition and metabolic capacity of the fecal microbiota of 286 women, resident in Auckland New Zealand, was determined by metagenomic analysis. Associations with BMI (obese, nonobese), body fat composition, and ethnicity (Pacific, n = 125; NZ European women [NZE], n = 161) were assessed using regression analyses. The fecal microbiotas were characterized by the presence of three distinctive enterotypes, with enterotype 1 represented in both Pacific and NZE women (39 and 61%, respectively), enterotype 2 mainly in Pacific women (84 and 16%) and enterotype 3 mainly in NZE women (13 and 87%). Enterotype 1 was characterized mainly by the relative abundances of butyrate producing species, Eubacterium rectale and Faecalibacterium prausnitzii, enterotype 2 by the relative abundances of lactic acid producing species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus ruminis, and enterotype 3 by the relative abundances of Subdoligranulum sp., Akkermansia muciniphila, Ruminococcus bromii, and Methanobrevibacter smithii. Enterotypes were also associated with BMI, visceral fat %, and blood cholesterol. Habitual food group intake was estimated using a 5 day nonconsecutive estimated food record and a 30 day, 220 item semi-quantitative Food Frequency Questionnaire. Higher intake of 'egg' and 'dairy' products was associated with enterotype 3, whereas 'non-starchy vegetables', 'nuts and seeds' and 'plant-based fats' were positively associated with enterotype 1. In contrast, these same food groups were inversely associated with enterotype 2. Fecal water content, as a proxy for stool consistency/colonic transit time, was associated with microbiota taxonomic composition and gene pools reflective of particular bacterial biochemical pathways. The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes, most likely due to differential dietary intake and fecal consistency/colonic transit time. These parameters need to be considered in future analyses of human fecal microbiotas.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , Feminino , Etnicidade , Nova Zelândia , Fezes/microbiologia , Obesidade , Ingestão de Alimentos
14.
Biomedicines ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428566

RESUMO

The role of gut microbes has been suggested in type 2 diabetes (T2DM) risk. However, their results remain controversial. We hypothesized that Asians with T2DM had different fecal bacterial compositions, co-abundance networks, and metagenome functions compared to healthy individuals, according to enterotypes. This hypothesis was examined using the combined gut microbiota data from human fecal samples from previous studies. The human fecal bacterial FASTA/Q files from 36 different T2DM studies in Asians were combined (healthy, n = 3378; T2DM, n = 551), and operational taxonomic units (OTUs) and their counts were obtained using qiime2 tools. In the machine learning approaches, fecal bacteria rich in T2DM were found. They were separated into two enterotypes, Lachnospiraceae (ET-L) and Prevotellaceae (ET-P). The Shannon and Chao1 indices, representing α-diversity, were significantly lower in the T2DM group compared to the healthy group in ET-L (p < 0.05) but not in ET-P. In the Shapley additive explanations analysis of ET-L, Escherichia fergusonii, Collinsella aerofaciens, Streptococcus vestibularis, and Bifidobacterium longum were higher (p < 0.001), while Phocaeicola vulgatus, Bacteroides uniformis, and Faecalibacterium prausnitzii were lower in the T2DM group than in the healthy group (p < 0.00005). In ET-P, Escherichia fergusonii, Megasphaera elsdenii, and Oscillibacter valericigenes were higher, and Bacteroides koreensis and Faecalibacterium prausnitzii were lower in the T2DM group than in the healthy group. In ET-L and ET-P, bacteria in the healthy and T2DM groups positively interacted with each other within each group (p < 0.0001) but negatively interacted between the T2DM and healthy groups in the network analysis (p < 0.0001). In the metagenome functions of the fecal bacteria, the gluconeogenesis, glycolysis, and amino acid metabolism pathways were higher, whereas insulin signaling and adenosine 5' monophosphate-activated protein kinase (AMPK) signaling pathways were lower in the T2DM group than in the healthy group for both enterotypes (p < 0.00005). In conclusion, Asians with T2DM exhibited gut dysbiosis, potentially linked to intestinal permeability and the enteric vagus nervous system.

15.
Front Genet ; 13: 917926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061192

RESUMO

Human gut microbiome is subject to high inter-individual and temporal variability, which complicates building microbiome-based applications, including applications that can be used to improve public health. Categorizing the microbiome profiles into a small number of distinct clusters, such as enterotyping, has been proposed as a solution that can ameliorate these shortcomings. However, the clinical relevance of the enterotypes is poorly characterized despite a few studies marking the potential for using the enterotypes for disease diagnostics and personalized nutrition. To gain a further understanding of the clinical relevance of the enterotypes, we used the Estonian microbiome cohort dataset (n = 2,506) supplemented with diagnoses and drug usage information from electronic health records to assess the possibility of using enterotypes for disease diagnostics, detecting disease subtypes, and evaluating the susceptibility for developing a condition. In addition to the previously established 3-cluster enterotype model, we propose a 5-cluster community type model based on our data, which further separates the samples with extremely high Bacteroides and Prevotella abundances. Collectively, our systematic analysis including 231 phenotypic factors, 62 prevalent diseases, and 33 incident diseases greatly expands the knowledge about the enterotype-specific characteristics; however, the evidence suggesting the practical use of enterotypes in clinical practice remains scarce.

16.
Gut Microbes ; 14(1): 2118831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081364

RESUMO

Human gut microbiome structure and emergent metabolic outputs impact health outcomes. However, what drives such community characteristics remains underexplored. Here, we rely on high throughput genomic reconstruction modeling, to infer the metabolic attributes and nutritional requirements of 816 gut strains, via a framework termed GEMNAST. This has been performed in terms of a group of human vitamins to examine the role vitamin exchanges have at different levels of community organization. We find that only 91 strains can satisfy their vitamin requirements (prototrophs) while the rest show various degrees of auxotrophy/specialization, highlighting their dependence on external sources, such as other members of the microbial community. Further, 79% of the strains in our sample were mapped to 11 distinct vitamin requirement profiles with low phylogenetic consistency. Yet, we find that human gut microbial community enterotype indicators display marked metabolic differences. Prevotella strains display a metabolic profile that can be complemented by strains from other genera often associated with the Prevotella enterotype and agrarian diets, while Bacteroides strains occupy a prototrophic profile. Finally, we identify pre-defined interaction modules (IMs) of gut species from human and mice predicted to be driven by, or highly independent of vitamin exchanges. Our analysis provides mechanistic grounding to gut microbiome stability and to co-abundance-based observations, a fundamental step toward understanding emergent processes that influence health outcomes. Further, our work opens a path to future explorations in the field through applications of GEMNAST to additional nutritional dimensions.


Assuntos
Microbioma Gastrointestinal , Animais , Bacteroides/genética , Microbioma Gastrointestinal/genética , Humanos , Metagenômica/métodos , Camundongos , Filogenia , Vitaminas
17.
Front Nutr ; 9: 947349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071931

RESUMO

Background: Salivary amylase (AMY1) gene copy number (CN) and Prevotella abundance in the gut are involved in carbohydrate digestion in the upper and lower gastrointestinal tract, respectively; and have been suggested as prognostic biomarkers for weight loss among overweight individuals consuming diets rich in fiber and wholegrains. Objective: We hypothesized that Prevotella abundance would be linked to greater loss of body fat after wholegrain consumption among individuals with low AMY1 CN, but not in those with high AMY1 CN. Methods: We reanalyzed data from two independent randomized ad libitum wholegrain interventions (fiber intake ∼33 g/d for 6-8 weeks), to investigate the relationship between baseline Prevotella abundance and body fat loss among healthy, overweight participants stratified into two groups by median AMY1 CN. Individuals with no detected Prevotella spp. were excluded from the main analysis. Results: In both studies, individuals with low AMY1 CN exhibited a positive correlation between baseline Prevotella abundance and fat loss after consuming the wholegrain diet (r > 0.5, P < 0.05), but no correlation among participants with high AMY1 CN (P ≥ 0.6). Following consumption of the refined wheat control diets, there were no associations between baseline Prevotella abundance and changes in body fat in any of the AMY1 groups. Conclusion: These results suggest that Prevotella abundance together with AMY1 CN can help predict fat loss in response to ad libitum wholegrain diets, highlighting the potential of these biomarkers in personalized obesity management.

18.
Nutrients ; 14(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956371

RESUMO

Infertility is defined as failure to achieve pregnancy within 12 months of unprotected intercourse in women. Trace elements, a kind of micronutrient that is very important to female reproductive function, are affected by intestinal absorption, which is regulated by gut microbiota. Enterotype is the classification of an intestinal microbiome based on its characteristics. Whether or not Prevotella-enterotype and Bacteroides-enterotype are associated with blood trace elements among infertile women remains unclear. The study aimed to explore the relationship between five main whole blood trace elements and these two enterotypes in women with infertility. This retrospective cross-sectional study recruited 651 Chinese women. Whole blood copper, zinc, calcium, magnesium, and iron levels were measured. Quantitative real-time PCR was performed on all fecal samples. Patients were categorized according to whole blood trace elements (low levels group, <5th percentile; normal levels group, 5th‒95th percentile; high levels group, >95th percentile). There were no significant differences in trace elements between the two enterotypes within the control population, while in infertile participants, copper (P = 0.033), zinc (P < 0.001), magnesium (P < 0.001), and iron (P < 0.001) in Prevotella-enterotype was significantly lower than in Bacteroides-enterotype. The Chi-square test showed that only the iron group had a significant difference in the two enterotypes (P = 0.001). Among infertile patients, Prevotella-enterotype (Log(P/B) > −0.27) predicted the low levels of whole blood iron in the obesity population (AUC = 0.894; P = 0.042). For the high levels of iron, Bacteroides-enterotype (Log(P/B) <−2.76) had a predictive power in the lean/normal group (AUC = 0.648; P = 0.041) and Log(P/B) <−3.99 in the overweight group (AUC = 0.863; P = 0.013). We can infer that these two enterotypes may have an effect on the iron metabolism in patients with infertility, highlighting the importance of further research into the interaction between enterotypes and trace elements in reproductive function.


Assuntos
Microbioma Gastrointestinal , Infertilidade Feminina , Oligoelementos , Bacteroides , Cobre , Estudos Transversais , Feminino , Humanos , Ferro , Magnésio , Prevotella , Estudos Retrospectivos , Zinco
19.
Front Microbiol ; 13: 919317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935237

RESUMO

Prematurity is a risk factor for dysbiosis of the gut microbiota due to particular birth conditions and frequent prolonged hospitalization of neonates. Although gut microbiota colonization after birth and its establishment during the hospitalization period have been studied in preterm infants, data on gut microbiota following discharge, particularly during early childhood, are scarce. The present study investigated the relationship between gut microbiota at 1 month after birth (hospitalization period) and 3.5 years of age in 159 preterm children belonging to the French EPIFLORE prospective observational cohort study. Analysis using bacterial 16S rRNA gene sequencing showed that the gut microbiota of preterm neonates at 1 month was highly variable and characterized by six distinct enterotypes. In contrast, the gut microbiota of the same children at 3.5 years of age showed less variability, with only two discrete enterotypes. An absence of association between enterotypes at 1 month and 3.5 years of age was observed. While the alpha diversity of gut microbiota significantly increased between 1 month and 3.5 years of age, for both alpha and beta diversities, there was no correlation between the 1-month and 3.5-years time points. Comparison at 3.5 years between children born either preterm (n = 159) or full-term (n = 200) showed no differences in terms of enterotypes, but preterm children harbored a lower Shannon diversity index and a different overall composition of microbiota than full-term children. This study suggests that the characteristics of the early gut microbiota of preterm children are not predictive of the microbial community composition at 3.5 years of age. However, the impact of gestational age is still noticeable on the gut microbiota up to 3.5 years of age.

20.
Clin Nutr ; 41(8): 1697-1711, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777109

RESUMO

BACKGROUND & AIMS: The critical window of concurrent developmental paths of the nervous system and gut microbiota in infancy provides an opportunity for nutritional interventions with potential health benefits later in life. METHODS: We compared the dynamics of gut microbiota maturation and explored its association with neurodevelopment at 12 months and 4 years of age in 170 full-term healthy infants fed a standard formula (SF) or a new formula (EF) based on standard formula supplemented with synbiotics, long chain polyunsaturated fatty acids (LC-PUFA) and bovine milk fat globule membranes (MFGM), including a breastfed reference group (BF). RESULTS: Using Dirichlet Multinomial Modelling, we characterized three microbial enterotypes (Mixed, anaerobic and aerobic profile; Bact, Bacteroides-dominant; Firm, Firmicutes-enriched) and identified a new enterotype dominated by an unidentified genus within Lachnospiraceae (U_Lach). Enterotypes were associated with age (Mixed with baseline, U_Lach with month 6, Bact and Firm with months 12 and 18). Trajectories or timely enterotype shifts in each infant were not random but strongly associated with type of feeding. Trajectories in SF shifted from initial Mixed to U_Lach, Bact or Firm at month. Microbiota maturation in EF split into a fast trajectory as in SF, and a slow trajectory with Mixed to U_Lach, Bact or Firm transitions at months 12 or 18, as in BF. EF infants with slow trajectories were more often in-home reared and born by vaginal delivery to mothers with pre-pregnancy lean BMI. At 12 months of age, language and expressive language scores were significantly higher in EF infants with fast trajectories than in BF. Neurodevelopmental outcomes were similar between EF infants with slow trajectories and BF at 12 months and 4 years of age. CONCLUSIONS: Feeding a synbiotics, LC-PUFA and MFGM supplemented formula in a specific infant environment promoted probiotic growth and retarded gut microbiota maturation with similar neurodevelopment outcomes to breastfed infants. CLINICAL TRIAL REGISTRY NUMBER: NCT02094547.


Assuntos
Microbiota , Simbióticos , Aleitamento Materno , Ácidos Graxos , Ácidos Graxos Insaturados , Feminino , Glicolipídeos , Glicoproteínas , Humanos , Lactente , Fórmulas Infantis , Gotículas Lipídicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...